Adversarial Examples are Not Easily Detected: Bypassing Ten Detection Methods

Nicholas Carlini, David Wagner University of California, Berkeley

Background

Neural Networks

- I assume knowledge of neural networks ...
- This talk: neural networks for classification
 - Specifically image-based classification

Background: Adversarial Examples

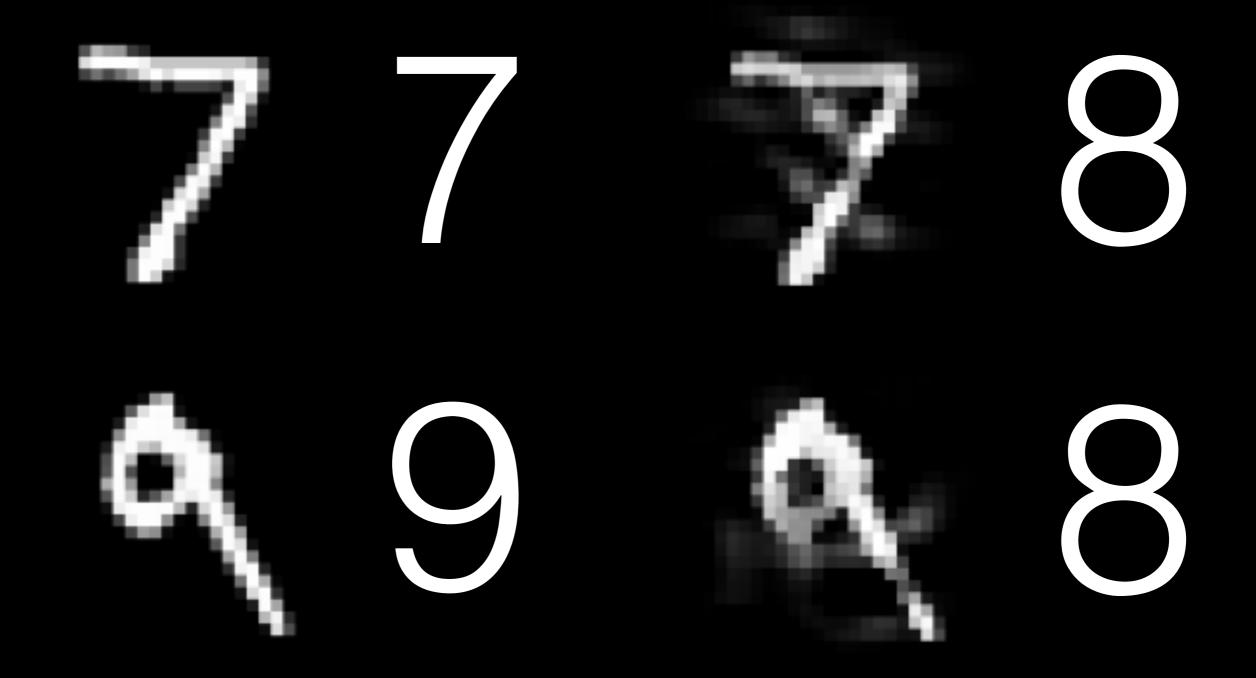
- Given an input X classified as label T ...
- ... it is easy to find an X' close to X
- ... so that F(X') != T

Constructing Adversarial Examples

 Formulation: given input x, find x' where minimize d(x,x') + L(x') such that x' is "valid"

- Where L(x') is a loss function minimized when F(x') != T and maximized when F(x') = T
- Solve via gradient descent

MNIST Normal Adversarial



CIFAR-10 Normal Adversarial

Truck

Airplane

This is decidedly bad

But also: ripe opportunity for research!

Mitigating Evasion Attacks to Deep Neural Networks via Region-based Classification. Xiaoyu Cao, Neil Zhenqiang Gong

APE-GAN: Adversarial Perturbation Elimination with GAN. Shiwei Shen, Guoqing Jin, Ke Gao, Yongdong Zhang A Learning Approach to Secure Learning. Linh Nguyen, Arunesh Sinha

EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples. Pin-Yu Chen, Yash Sharma, Huan Zhang, Jinfeng Yi, Cho-Jui Hsieh

Ensemble Methods as a Defense to Adversarial Perturbations Against Deep Neural Networks. Thilo Strauss, Markus Hanselmann, Andrej Junginger, Holger Ulmer

MagNet: a Two-Pronged Defense against Adversarial Examples. Dongyu Meng, Hao Chen

CuRTAIL: ChaRacterizing and Thwarting Adversarlal deep Learning. Bita Darvish Rouhani, Mohammad Samragh, Tara Javidi, Farinaz Koushanfar

Efficient Defenses Against Adversarial Attacks. Valentina Zantedeschi, Maria-Irina Nicolae, Ambrish Rawat Learning Adversary-Resistant Deep Neural Networks. Qinglong Wang, Wenbo Guo, Kaixuan Zhang, Alexander G. Ororbia II, Xinyu Xing, Xue Liu, C. Lee Giles

SafetyNet: Detecting and Rejecting Adversarial Examples Robustly. Jiajun Lu, Theerasit Issaranon, David Forsyth Enhancing Robustness of Machine Learning Systems via Data Transformations. Arjun Nitin Bhagoji, Daniel Cullina, Bink Sitawarin, Prateek Mittal

Towards Deep Learning Models Resistant to Adversarial Attacks. Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, Adrian Vladu

Towards Robust Deep Neural Networks with BANG. Andras Rozsa, Manuel Gunther, Terrance E. Boult <u>Deep Variational Information Bottleneck. Alexander A. Alemi, Ian Fischer, Joshua V. Dillon, Kevin Murphy</u>

Research Question:

Which of these defenses are robust?

Focus of this talk: detection schemes

Normal Classifier

Normal Classifier

Detector & Classifier

Detector

Detector & Classifier

Detector

This Talk:

How to evaluate a defense
 Comment on explored directions

Defense #1:

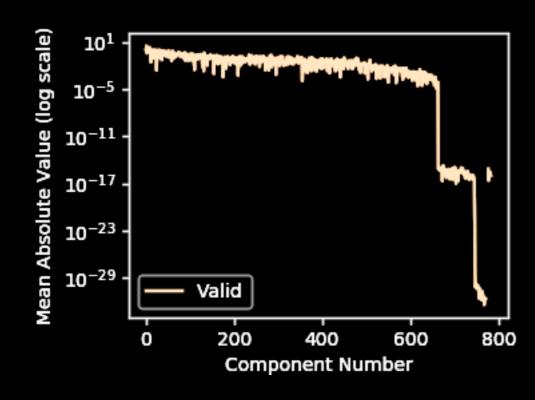
PCA-based detection

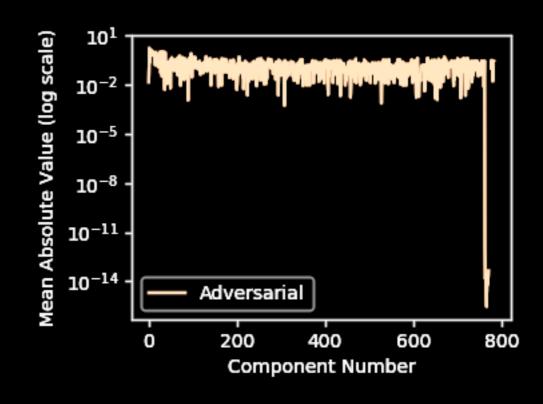
PCA-based detection

- Hypothesis: Adversarial examples rely on later principle components
 - ... and valid images don't ...
 - ... so let's detect use of high components

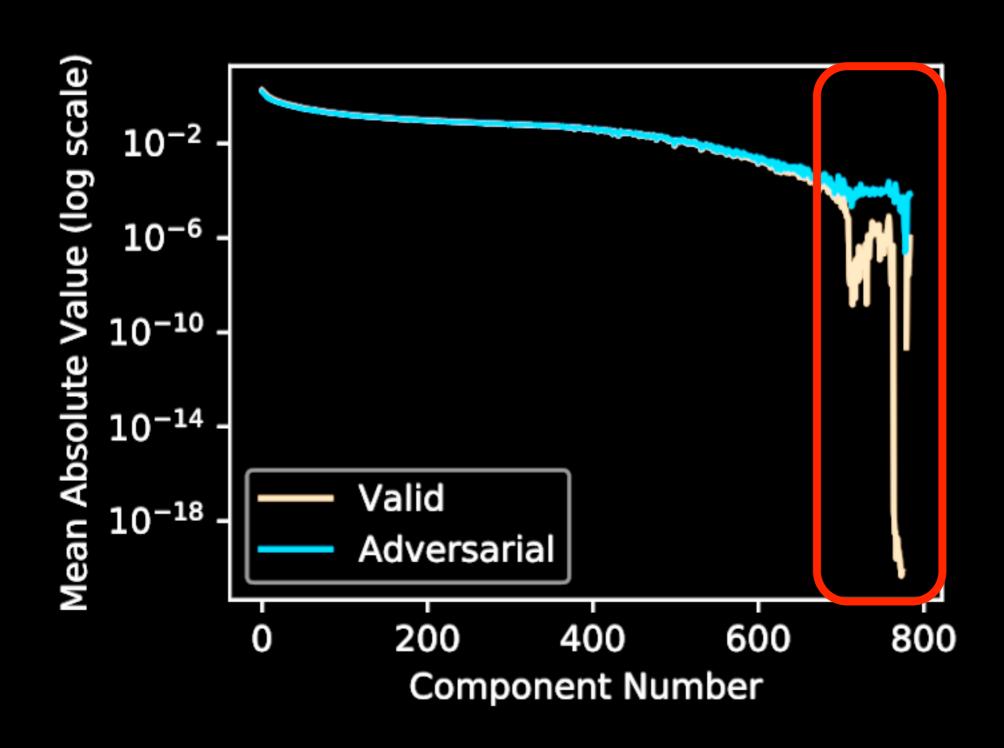
Normal

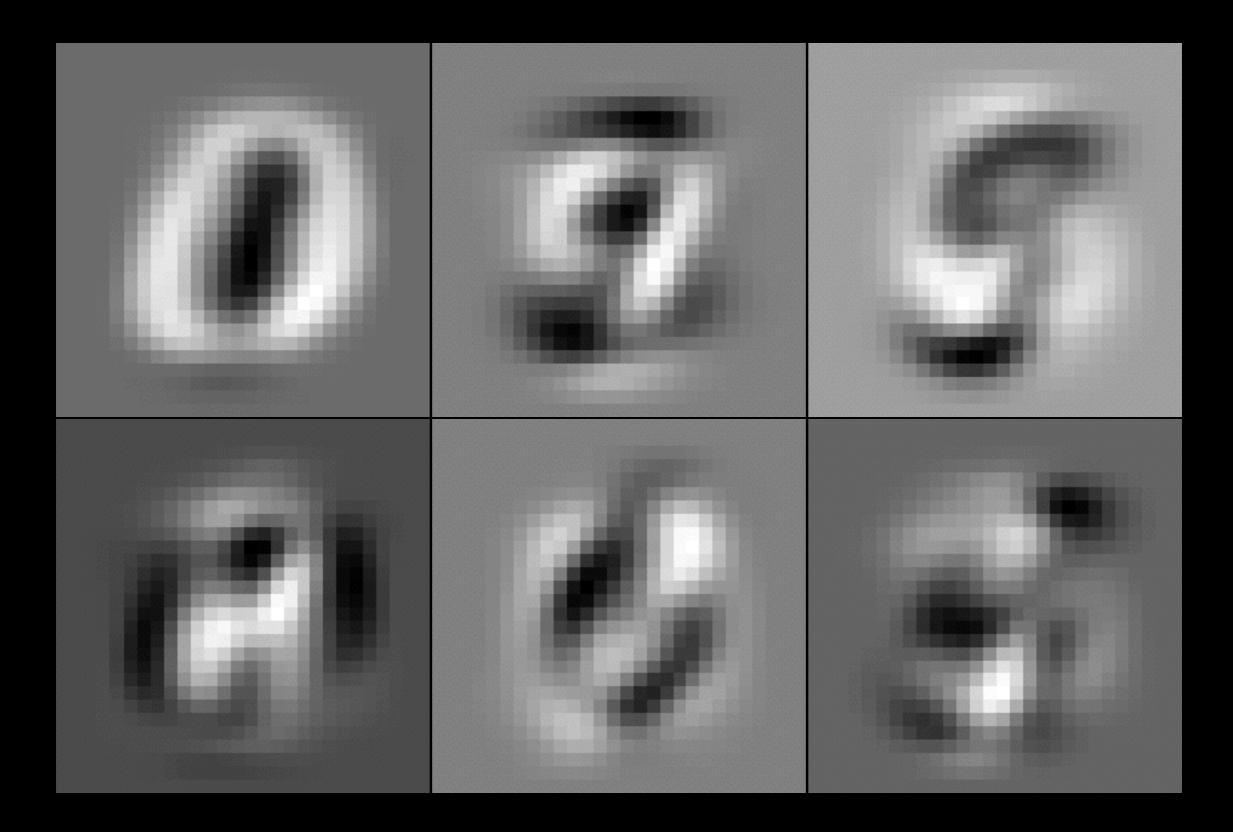
Adversarial

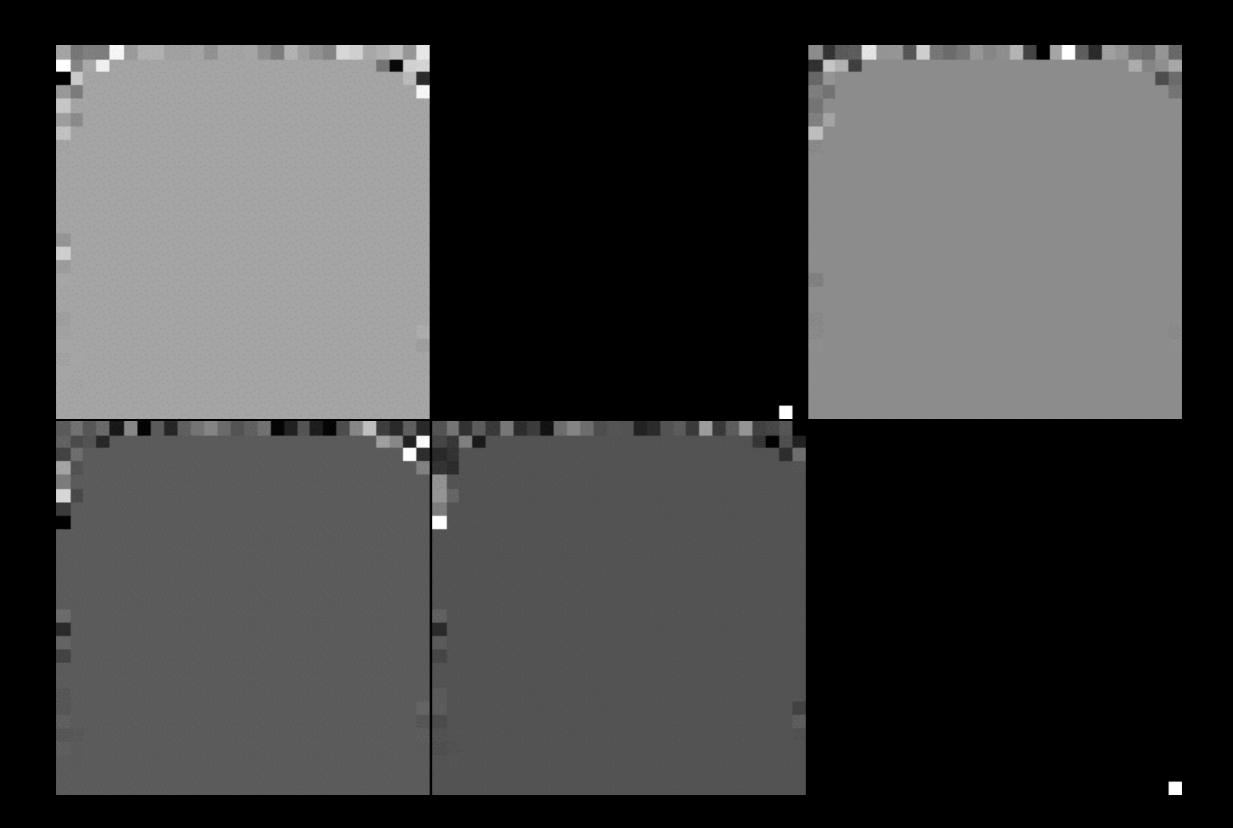




It works!







Attack:

Only modify regions of the image that are also used in normal images.

Original

Adversarial (unsecured)

Adversarial (with detector)

Lesson 1: Separate the artifacts of one attack vs

intrinsic properties of adversarial examples

Lesson 2:

MNIST is insufficient CIFAR is better

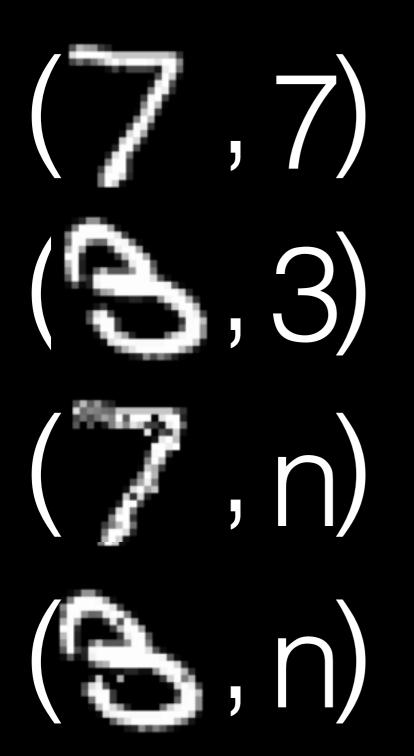
Defense #2:

Additional Neural Network Detection

Normal Training

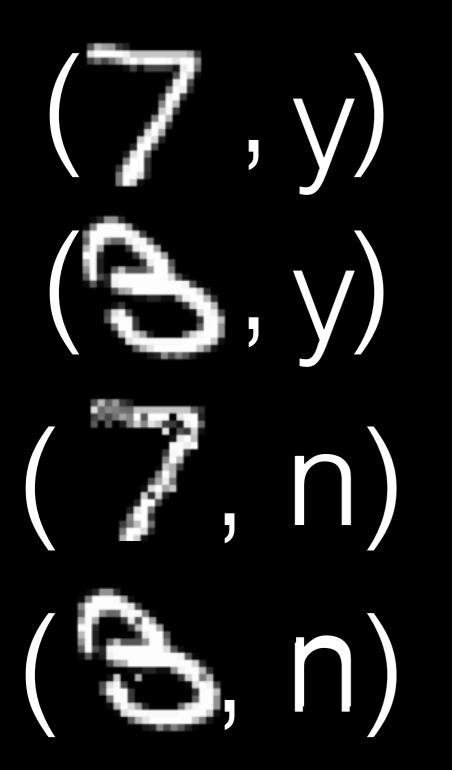
Training

Adversarial Training



Attack

Adversarial Training



Training

Sounds great.

Sounds great.

But we already know it's easy to fool neural networks ...

... so just construct adversarial examples to

- 1. be misclassified
- 2. not be detected

Breaking Adversarial Training

- minimize d(x,x') + L(x')
 such that x' is "valid"
- Old: L(x') measures loss of classifier on x'

Breaking Adversarial Training

- minimize d(x,x') + L(x') + M(x')
 such that x' is "valid"
- Old: L(x') measures loss of classifier on x'
- New: M(x') measures loss of detector on x'

Original

Adversarial (unsecured)

Adversarial (with detector)

Lesson 3:

Minimize over (compute gradients through) the full defense

Defense #3:

Network Randomization

Randomized Classifier

Classifier

Randomized Classifier

Classifier

Breaking Randomization

- minimize $\overline{d(x,x')} + L(x')$ such that x' is "valid"
- Old: L(x') measures loss of network on x'

Breaking Randomization

- minimize d(x,x') + E[L(x')]
 such that x' is "valid"
- Old: L(x') measures loss of network on x'
- Now: E[L(x')] expected loss of network on x'

Original

Adversarial (unsecured)

Adversarial (with detector)

Original

Adversarial (unsecured)

Adversarial (with detector)

Evaluation Lessons

- 1. Don't evaluate only on MNIST
- 2. Minimize over the full defense
- 3. Use a strong iterative attack
- 4. Release your source code!